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13	 Relative deprivation in silico: agent-based 
models and causality in analytical sociology

Gianluca Manzo

Introduction

The concept of relative deprivation is one of the most frequently used 
notions in economics (see Clark et al. 2008), in social psychology (see 
Tyler et al. 1997:Â€ch. 2; Walker and Smith 2001:Â€ch. 1) and in sociology 
(see Cherkaoui 2001; Coleman 1990:Â€ch. 8; Lundquist 2008). Despite 
its diffusion, formal analyses of the mechanisms generating rates and 
feelings of relative deprivation are far less common.1

In sociology, the most notable exceptions are, on the one hand, 
Boudon’s (1982:Â€ch. 5; 1979:Â€52–6) analysisÂ€– later taken up by Kosaka 
(1986) and Yamaguchi (1998)Â€– and, on the other, Burt’s (1982:Â€ch. 5, 
191–8) contribution.

These analyses, however, have a different focus. The first group have 
the following characteristics:

1.	 They are interested in the rates of relative deprivation.
2.	 They tend to demonstrate that the relation between objective oppor-

tunity structure and proportion of dissatisfied actors can be both 
negative and positive.

3.	 They implicitly refer to actors who compare themselves with a given 
group as a whole (global comparisons).

By contrast, Burt’s model can be characterized as follows:

1.	 It focuses on the individual feelings of deprivation.

I wish to express my gratitude to Andrew Abbott, Carlo Barone, Thomas Fararo and Kenji 
Kosaka for reading and commenting on a first draft of this paper and to Amy Jacobs and 
Barbara Cowell for correcting and revising my English.
1	 Davis (1959) seems to be the first attempt to formalize the ideas at the heart of The 

American Soldier. His model is concerned with the proportion of deprived actors 
and it supposes completely socially unstructured comparisons between actors. The 
model, however, does not contain any generative mechanism of the rate of relative 
deprivation.
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2.	 It does not address the question about the positive or negative nature 
of the relation between objective opportunity structure and the 
intensity of feelings of dissatisfaction.

3.	 It takes into account comparisons between people who are embed-
ded in social networks (local comparisons).

My aim here is to develop a unified theoretical framework which enables 
us to analyze formally the relation between these different aspects at 
the same time. In particular, I will try to demonstrate two statements:

1.	 The four-way relation between the attractiveness of the goods at 
stake, the opportunity structure, the percentage of dissatisfied 
actors, and the intensity of their feelings of dissatisfaction may take 
a variety of forms except the most sought-after one, i.e. the “more 
opportunities, less dissatisfied-and-less-intensely-dissatisfied actors” 
pattern.

2.	 The presence of dyadic interactions can significantly modify certain 
aspects of this four-way relation such as it originally appears in a 
microcosm whose actors are entirely isolated and where only global 
comparisons are made.

Compared with the above-mentioned formal analyses, an additional 
distinctive trait here is that I have sought to solve these problems by pro-
gramming and studying an agent-based model (Ferber 1999; Gilbert 
2007; Miller and Page 2007).2

In the context of this book, this application serves a second purpose. 
The chapter is intended as an illustration of the potentialities of agent-
based modeling as a methodological support for the two main aspects 
of the conception of causality analytical sociology is built on, i.e. “gen-
erativity” and “counterfactuality.”3

According to the first criterion, causal claims rest on the possibil-
ity to demonstrate that the relation between two happenings ultim-
ately comes from an underlying bundle of structured triads “entities/

2	 This computational method has recently been singled out for its conceptual f lexibility 
and computational power in economics (Axtell 2000; Epstein 2006; Tesfatsion and 
Judd 2006), finance (Mathieu et al. 2005), political science (Axelrod 1997; Cederman 
2001), geography (Sanders 2007) and at least partially in sociology (Hummon and 
Fararo 1995; Macy and Flache 2009; Macy and Willer 2002; Sawyer 2003).

3	 Agent-based methodology has recently been put on the analytical sociology agenda 
(Hedström 2005:Â€ch. 6; Hedström and  2009). I discuss this link more deeply 
elsewhere (see Manzo 2007a, 2007b, 2010). Let us also notice that the elective affin-
ities between generative epistemology and agent-based methodology have already been 
pointed out (Cederman 2005; Epstein 2006:Â€chs. 1–2). By contrast, to my knowledge, 
no explicit bridge has yet been built between the counterfactual account of causality 
and agent-based models.
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properties/activities,” that is to say a “mechanism” (see Machamer et 
al. 2000:Â€3). Such a conception of causality was first outlined by Harré 
(1972:Â€115–19, 136–7), who called it “generative theory of causality”; 
it then progressively spread in statistics (Cox 1992), economics (Simon 
1979) and sociology (Boudon 1979; Fararo 1989, 2009; Goldthorpe 
2001; Hedström 2004). Analytical sociology is programmatically build-
ing on this idea (see Hedström 2005:Â€ch. 2; Hedström and Bearman 
2009; Hedström and Swedberg 1998:Â€7).

On the other hand, the counterfactual account of causality basically 
states that the causal character of the relation between two happenings 
ultimately rests on the possibility to demonstrate that if, say, X had not 
occurred, Y would not have occurred. Deeply grounded in philosophy 
(see Lewis 1973 and, more recently, Woodward 2000), such a concep-
tion of causality has widely been accepted in economics earlier than in 
sociology (see Morgan and Winship 2007; Winship and Morgan 1999). 
As some recent contributions suggest (see Hedström and Udéhn 2009; 
Hedström and Ylikoski 2010), counterfactuals are also entering epis-
temological agenda of analytical sociology.

From a methodological point of view, “generativity” and “counter-
factuality” raise two different, although related, problems. The genera-
tive criterion requires to demonstrate that a given set of loops between 
structures, behaviors and interactions produces the aggregate patterns 
of interest. An agent-based model allows to provide this demonstration. 
Its internal structure allows the design of multi-level artificial mecha-
nisms while its dynamic makes it possible to transform the mechanism 
in a process, which is what one is looking for when one wants to deter-
mine what a mechanism is able to bring about.

On the other hand, the counterfactual criterion demands to evaluate 
the degree to which a given alteration of the mechanism at hand modi-
fies the aggregate patterns of interest. Agent-based models allow to eas-
ily perform this task. When one explores the parameter space and the 
internal structure of an agent-based model, one is indeed studying the 
sensitivity of the outcomes to the mechanisms and its initial conditions. 
In this sense, this computational technique provides a powerful tool to 
create and analyze “potential outcomes” in silico.

It is worth noticing, however, that to claim that agent-based models 
represent flexible causally generative and counterfactual devices does not 
amount to state they are able to produce empirically validated causal state-
ments on their own. In this regard, it is important to Â�distinguish two steps:

1.	 the analysis of how posited mechanisms work and the high-level pat-
terns they generate; and
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2.	 the empirical validation of them.

The first task requires to construct microcosms which run in accord-
ance with one or another set of rules capable of generating one or 
another set of individual and collective states. Here agent-based models 
are useful and necessary. By contrast, the second task is not specific to 
analytic sociology:Â€ it only requires injecting empirical information at 
the entrance to or exit from an agent-based model. We already have a 
broad spectrum of tools (qualitative and quantitative) for doing this.

To solve the problem of discovering real-world causal relations, we 
obviously have to integrate the two phases. But to claim that we should 
test a mechanism empirically before submitting it to rigorous formal 
study is to reverse the order in which the problems should be solved.4

The chapter is organized as follows. I first give an overview of the 
literature on relative deprivation and I posit some useful conceptual 
distinctions. I then present the theoretical structure of the agent-based 
model I built in order to study the rate and feelings of relative depriv-
ation at the same time. Lastly, I discuss the computational results 
obtained by simulating this artificial society under several parameter 
settings. The conclusion summarizes the questions I have addressed as 
well as the main results and limitations of the analysis.

A useful analytical distinction:Â€RD frequency  
and RD intensity

The empirical observations which gave rise to sociological literature 
on relative deprivation (hereafter noted RD) all noted an inverse rela-
tion between actors’ perceptions of the conditions they act in and the 
“objective” quality of those conditions.5

Stouffer and his colleagues (1965 [1949]:Â€vol. i, pp. 52, 125) were the 
first to use the concept explicitly to explain this seemingly paradoxical 

4	 I tried to satisfy both requirements in my analyses of educational inequalities in France 
and in Italy (see Manzo 2009a). Two other good examples of sociological empiric-
ally calibrated agent-based models are Hedström (2005:Â€ch. 6) and Bruch and Mare 
(2006).

5	 The most well-known is certainly the inverse correlation at the core of The American 
Soldier (Stouffer et al. 1965 [1949]:Â€251–2) between promotion rates in the army and 
subjective perception of opportunities for promotion. But, before The American Soldier, 
Tocqueville (1955 [1856]:Â€bk. iii, ch. 4, p.Â€176) had observed that “it was precisely in 
those parts of France where there had been the most improvement that popular discon-
tent ran highest.” Durkheim (1951 [1897]:Â€bk. ii, ch. v, p. 244) noted that “an unusual 
increase in the number of suicides is observed with this collective renaissance.” After 
The American Soldier, Runciman (1966:Â€3) acknowledged that “dissatisfaction with the 
system of privileges and rewards in a society is never felt in an even proportion to the 
degree of inequality to which its various members are subject.”
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correlation. The hypothesis implicit in this “interpretative intervening 
variable,” as Merton (1957:Â€229) described it, is that actors’ assessments 
of their objective opportunities actually depend on their standards of 
comparison (Stouffer et al. 1965 [1949]:Â€vol. i, p. 125).6

While empirical observation of a linear inverse relation between 
opportunity structure and people’s perceptions of those opportunities 
was what first motivated the use of the RD concept, the problem of how 
general that relation is has not yet been completely resolved.7

This problem is complex because it arises from two distinct but over-
lapping dimensions. On the one hand, the RD phenomenon involves 
two aspects; on the other hand, a large variety of mechanisms respon-
sible for them can be at work.

On the first point, one should carefully distinguish between RD fre-
quencyÂ€– i.e. the proportion of actors who do not have what they wantÂ€– 
and RD intensity:Â€the strength of the feeling actors associate with this 
discrepancy (see Runciman 1966:Â€10; see also Elster 2007:Â€58). This 
suggests that the mechanisms that move a certain number of actors to 
perceive a discrepancy between reality and their desires may be differ-
ent from those that engender their specific reactions to this assessment. 
From this in turn it follows that the relations between conditions of 
well-being and subjective perceptions of those conditions can take dif-
ferent forms depending on which aspect of RD is being studied and the 
type of mechanisms mobilized.8

6	 Runciman (1966:Â€ 10) was the first to give a more developed definition:Â€ “We can 
roughly say that A is relatively deprived of X when (i) he does not have X, (ii) he sees 
some other person or persons, who may include himself at some previous or expected 
time, as having X (whether or not this is or will be in fact the case), (iii) he wants X, 
and (iv) he sees it as feasible that he should have X.” A pioneering definition developed 
in social psychology adds a fifth component:Â€“lack[s] a sense of responsibility for fail-
ure to possess X” (Crosby 1976:Â€Table 1).

7	 The authors of The American Soldier themselves seemed aware of the problem:Â€“To be 
conservative, we should limit our conclusion by saying that a force with relatively less 
promotion chances tended to have a larger proportion of men speaking very favorably 
of promotion opportunities than a force with greater promotion chances” (Stouffer 
et al. 1965 [1949]:Â€257). The point was mentioned in passing by Merton (1957:Â€237, 
n. 7):Â€“presumably, the relationship is curvilinear, and this requires the sociologists 
to work out toward the conditions under which the observed linear relation fails to 
obtain.” Runciman (1966:Â€19–20) took up the point nearly ten years later:Â€“this rela-
tion is both complicated and variable … it can as well take the form of an inverse cor-
relation as a direct one” (1966 247). In economics, the Easterlin paradox holding that 
“raising the incomes of all does not increase the happiness of all” (Easterlin 1973:Â€4) 
has been repeatedly analyzed (cf. Clark et al. 2008) to demonstrate that a positive rela-
tion between income and satisfaction with life does exist, not only at the individual 
level but also at the aggregate level and not only within a given country but also among 
countries (Wolfers and Stevenson 2008).

8	 This analytic distinction appears clearly in contemporary social psychology definitions 
of RD:Â€“a judgment that one is worse off compared to some standard; this judgment 

 

 

 

 

 

 



Relative deprivation in silico 271

On the second point, RD generative mechanisms can be inscribed 
in a basic analytic space using axes that correspond to the comparison 
reference points that actors choose (for a more specific analytical map, 
see Gambetta 1998:Â€114–19). Two main types are usually considered in 
social psychology (Tyler et al. 1997:Â€ch. 2):

1.	 actor-specific reference points, namely one’s own past condition or 
expectations (intrapersonal comparisons); and

2.	 reference points external to the actor, namely other individuals or 
groups (inter-individual and intergroup comparisons).

Recent studies have attempted to show that these two types of com-
parisons actually proceed from a single, more general type known as 
counterfactual comparisons:Â€“comparisons of one’s current outcomes 
with outcomes that one might have obtained but did not” (Olson and 
Roese 2002:Â€266).9

Compared with the statistical analysis of observational data (see Clark 
et al. 2008:Â€ 111–15), constructing formal models of RD-generating 
mechanisms and analyzing them deductively seems an attractive way 
of trying to establish what the form of the relation between opportunity 
structure and RD frequency/intensity is. This strategy indeed enables us 
first to establish all the outcomes logically associated with a given mech-
anism (or several), and, then, to locate, within this range of possibilities, 
the section of the real world covered by the empirical data under study.

As I said, Boudon’s formal model suggested that the relation between 
opportunity and individual satisfaction can be both negative and 

is linked, in turn, to feelings of anger and resentment” (Tyler et al.Â€1997:Â€17); “a sub-
jective state that shapes emotions and cognitions and influences behavior” (Pettigrew 
2002:Â€353).

9	 From an historical point of view, we find intrapersonal comparisons in Tocqueville’s 
Old Regime and the French Revolution (1955 [1857]:Â€177):Â€“Dazzled by the prospect of 
a felicity undreamed of hitherto and now within their grasp, people were blind to the 
very real improvement that had taken place and eager to precipitate events”; “Patiently 
endured so long as it seems beyond redress, a grievance comes to appear intolerable 
once the possibility of removing it crosses men’s mind” (see Cherkaoui (2005:Â€ch. 1) for 
a perceptive reading of these mechanisms in Tocqueville’s work). We also find intraper-
sonal comparisons, with astounding parallelism, in Durkheim’s thinking:Â€“Thus, the 
more one has, the more one wants, since satisfactions received only stimulate instead 
of filling needs” (Durkheim 1951 [1897]:Â€248); and “The less limited one feels, the 
more intolerable all limitation feels” (Durkheim 1951 [1897]:Â€254). Durkheim also 
seems to have been sensitive to intergroup comparisons:Â€“Lack of power, compelling 
moderation, accustoms men to it, while nothing excites envy if no one has superfluity” 
(Durkheim 1951 [1897]:Â€254). The social comparison reference points at the heart of 
The American Soldier (Stouffer et al. 1965:Â€251) prompted Merton’s analysis (1957:Â€chs. 
vii and viii) of the concept of “reference group.” Runciman (1966:Â€24–5) combined 
the two, positing a loop between a rise in individual expectations and a rise in actor 
reference group level.
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positive, a point that has been confirmed by Kosaka’s and Yamaguci’s 
re-analyses of the model. The mechanism which generates this result is 
simple:Â€a combined set of rules, individual reasoning and interdepend-
ence structure that lead a certain number of actors to rationally hope 
to obtain more than they could objectively obtain (according to Gurr’s 
(1970:Â€51) typology, this is a “aspirational deprivation” mechanism). In 
terms of the above distinctions between RD frequency and RD inten-
sity, however, all these authors were only concerned with RD frequency. 
But what is the form of the relation between opportunity structure and 
RD intensity? Moreover, how are these three elements linked to one 
another and how is this threefold relation modified when actors are 
embedded in some sort of relational structures?

An agent-based model of RD frequency and RD intensity

To answer these questions, I programed an agent-based model which 
contains six components. While the first five simply generalize Boudon’s 
original model, the sixth one introduces a new module which quantifies 
the disappointment, envy and regret which dissatisfied actors may feel 
when intrapersonal comparisons, population-based or neighborhood-
based inter-individual comparisons and counterfactual reasoning are 
at work.10

1.	 Agents’ opportunity structure. It is specified by the following elem-
ents:Â€(a) a population of N agents; (b) a limited numbers of two types 
of goods, G1 and G2; (c) the sum of G1 plus G2 is always equal to N; 
(d) G1 and G2 differ in attractiveness in the sense that the benefit B1 
(> 0) associated with G1 is higher than the benefit B2 (≥ 0) associated 
with G2; (e) G1 and G2 also differ in accessibility in the sense that G1 
can only be obtained if agent spends C1 (> 0 and < B1) whereas G2 
can only be obtained if agent spends C2 (≥ 0, ≤ B2 and < C1); (f) all 
agents have enough resources to be able to spend C1 or C2.

2.	 Agents’ beliefs. They build on the following elements:Â€(a) each agent 
knows the number of G1 and G2 available in society but does not 
know the number of agents A(S1) and A(S2) who will respectively 
adopt strategy S1 (spending C1 to obtain B1) or strategy S2 (spending 
C2 to obtain B2); (b) each agent must therefore estimate the gain 
expected from S1 (G[S1]) compared to the gain expected from S2 

10	 Constructing and analyzing a multi-agent system is still a fairly costly operation 
(see Janssen et al. 2008). Here I used the agent-based simulation platform option 
(Railsback et al. 2006), specifically NetLogo 4.0.3 (Tisue and Wilensky 2004a, 
2004b; Wilensky 1999).
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(G[S2]) as a function of the number of agents A(S1) likely to opt for 
S1 (and therefore the number likely to opt for S2).11

3.	 Agents’ desires. Each agent wishes to obtain a net benefit from his 
choice so that, for each number of agents A(S1) likely to opt for S1, 
he will choose S1 if and only if G(S1) - G(S2) > r (where r is the min-
imum gain demanded).

4.	 Agents’ final choice. Given the vector of choices for or against S1 pro-
duced by the dynamic conjunction of an agent’s beliefs and desire, 
the probability of the agent ultimately deciding for or against S1 
increases non-linearly as a function of the proportion of cases in 
which agent chooses S1. Specifically, I chose a logistic function dis-
cretized by 10-unit intervals.12

5.	 Agents’ final gain. Once agents have made their definitive choice for 
S1 or S2, G1 and G2 available in the system can be allocated to them. 
There are three possible situations:

	 (a)	� If the number of agents who definitively opted for S1 is exactly 
equal to the number of G1, all agents are satisfied:Â€ those who 
wanted G1 got G1; the others, who wanted G2, got G2.

	 (b)â•‡� If the number of agents who definitively opted for S1 is greater 
than the number of G1, some of the agents who spent C1 to obtain 
B1 will actually only be able to obtain G2. As there are no indi-
vidual or social screening traits in this artificial world, agents 
receiving the lesser benefit at the higher cost are determined by 
random selection.

	 (c)	� If the number of agents who ultimately opt for S1 is below the 
number of G1, the number of agents opting for S2 will be above 
the number of available G2. Given that the game rule stipulating 

11	 In particular, as long as A(S1) < G1,

G[S1] = B1Â€– C1� [1]
G[S2] = ((B2Â€– C2) * G2) / A(S2)� [2]

Instead, when A(S1) > G1,

G[S1] �= ((B1Â€– C1) * G1) / A(S1) + ((B2Â€– C1) * (A(S1)Â€– G1)) /A(S1)  
= ((B1Â€– B2) * G1 / A(S1)) + (B2Â€– C1)� [3]

G[S2] = B2Â€– C2� [4] 

It is worth noticing that neither Boudon (1982:Â€117) nor Kosaka (1986:Â€36–40) con-
sidered the case where A(S1) < G1. This omission is probably due to the fact that both 
authors were studying the model only for B2 = C2 = 0 and rÂ€=Â€0. Under the condition 
rÂ€=Â€0, the case of A(S1)Â€<Â€L1 is not of much interest because S1 will always be more advan-
tageous than S2. But if the intention is to run the simulation on a vast range of parameter 
combinations, this generalization of agents’ belief updating process has to be included.

12	 The two situations originally studied by Boudon (1979:Â€52–6)Â€– S1 is chosen in 50 per-
cent of cases and S1 is chosen in 100 percent of cases (S1 as a dominant strategy)Â€– thus 
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that B1 cannot be obtained by spending only C2 precludes 
Â�allocating G1 to these agents, the simplest solution is to ran-
domly allot a zero-gain to the surplus of agents desiring G2.

Thus programed, Boudon’s original model can now generate not one 
but two types of RD (hereafter indicated as RD1 and RD2), whose 
frequency can be studied (hereafter respectively indicated RD1

freq 
and RD2

freq). In particular, RD1 affects agents who, having chosen 
G1, only got G2 because there were not enough G1 lots. By contrast, 
RD2 affects agents who wanted G2 but in fact got nothing given the 
rules of the game and because there were not enough G2 lots.

6.	� Agents’ emotions. The experience of RD1 may generate a different 
bundle of feelings of dissatisfaction than the one generated by the 
experience of RD2. In this connection, I posit that:

(a)	� Intrapersonal comparisons will be made in both cases. The 
strength of the disappointment they generate is proportional to 
the size of the difference between expected gain and gain ultim-
ately obtained.

(b)	�Inter-individual comparisons also exist for both RD1 and RD2. 
The strength of the envy they generate is understood to be 
inversely proportional to the number of those who did not get 
what they wanted (i.e. RD1 freq and RD2 freq).13

(c)	� RD2 can also imply a specific source of dissatisfaction. Agents 
finding themselves in this situation may reason counterfactu-
ally as follows:Â€ “If the rules of the game were different, there 
wouldn’t be a waste of G1.” They may think that non-allotted 
G1 could be put back in the game at a lower priceÂ€– exception-
ally. My assumption here is that criticism of this kind, implicitly 
aimed at the rule system in effect, may give rise to regrets, and 
that the breadth of those regrets would be proportional to the 
number of non-allotted G1 lots.14

become respectively the equilibrium point and the upper limit of a more general 
choice function. This choice then represents here the main source of heterogeneity 
among agentsÂ€– a point Yamaguchi (1998) greatly insisted on. The sources of hetero-
geneity will be much more extensive in the sixth component of the model.

13	 According to Elster (1999:Â€141), envy is one of the most frequent comparison-based 
emotions (the ones “triggered by favorable or unfavorable comparisons with individ-
uals with whom we will never interact”). More specifically, I am quantifying here 
the strength of this emotion by a mechanism implicitly postulated by Stouffer et al. 
(1965:Â€251), where the intensity of individual feelings of dissatisfaction is inversely 
related to the diffusion of failure.

14	 Elster (1999:Â€241–2) establishes a direct link between counterfactual reasoning and 
emotions:Â€“Fifth, there are counterfactual emotions generated by thoughts of what 
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With RD1
intensity and RD2

intensity indicating the intensity of the dissatisfac-
tion feeling perceived by agents experiencing respectively RD1 and RD2, 
we have the following simple representation of these three hypotheses:

RD1
intensity = α[(B1Â€– C1)Â€– (B2Â€– C1)] + β(1/ RD1

freq)� [5]

RD2
intensity = γ[(B2Â€– C2)Â€– (0Â€– C2)] + δ(1/ RD2

freq) + λ[non-allotted G1]� [6]

where α, β, γ, δ and λ are random values drawn from uniform distributions 
[0, 0.5] that represent the idea that the three feeling-of-Â�deprivation gen-
erative mechanisms operate differently from one individual to another.15

In truth, this formalization implies an additional supposition. The 
second term in [5] and [6] actually inversely links the intensity of envy 
felt by agents with the overall proportion of agents who find themselves 
in the same deprivation situation.

But we could reasonably allow that when agents are determining how 
strongly they think they have been penalized in not getting what they want 
compared to those who spent as much as they did and did get the desired 
lot, they only take into account local diffusion of RD1 and RD2. While 
this hypothesis seems reasonableÂ€– one point in its favor is that it does not 
require us to suppose that agents have permanent knowledge of the overall 
state of the systemÂ€– it also raises the problem of defining what is “local.”

As indicated by the second term of [7] and [8], my hypothesis here 
is that what makes up the horizon within which agents assess the dif-
fusion of RD situations is the set of dyadic ties they are embedded in 
(“neigh” refers to agent’s “neighborhood”; i.e. the agents he is in direct 
contact with).16

RD1
intensity = α[(B1Â€– C1)Â€– (B2Â€– C1)] + β(1/ RD1

freq[neigh])� [7]

RD2
intensity = γ[(B2Â€– C2)Â€– (0Â€– C2)] + δ(1/ RD2

freq[neigh])  
+ λ[non-allotted G1]� [8]

might have happened but didn’tÂ€ – regret, rejoicing, disappointment, elationÂ€– and 
wistful subjective emotions generated by thoughts of what might still happen, albeit 
with insufficient probability to generate hope or fear.”

15	 To obtain RD1
intensity and RD2

intensity values that vary between two given extremes, we 
can standardize each term of [5] and [6] (see below noteÂ€21). It would also be useful 
to study how the model behaves if we substitute a “ratio” (or a “log-ratio”) for the 
difference in the first term of [5], [6], [7] and [8], since the algebraic properties of 
this functional form are considerable (see Jasso 2008). Finally, notice that the first 
term of equations [5] and [6] can be simplified, respectively, to (B1–B2) and to (B2), 
so expressing the idea that the strength of the disappointment generated by intraper-
sonal comparisons is supposed to be proportional to the size of the expected benefit 
that the actor ultimately does not obtain.

16	 As Gartrell (1987) remarked, the literature on relative deprivation tends to ignore that 
ego-centered social networks are a powerful source which determine “who compares 
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Formally speaking, this second definition of persons “in the same boat,” 
to borrow Stouffer’s expression, raises a problem we do not encounter 
with the “global comparisons” implied by [5] and [6]:Â€how are we to 
handle the situation where RD1

freq or RD2
freq are nil in the agent’s neigh-

borhood? To remain consistent with the posited mechanism, an agent’s 
feeling of envy can only be maximal here (since in this situation he 
would be the only one who did not get what he wanted). To represent 
this ideaÂ€ – i.e. “zero neighbors experiencing RD”Â€ – I have changed 
0 into 0.01 when the situation presents itself (otherwise computation 
would be impossible), thereby providing maxima that vary with size of 
agent’s neighborhood.17

Simultaneously generating RD frequency and RD 
intensity patterns

The sensitivity analysis that follows aims to demonstrate that within 
the artificial society driven by the mechanisms just described, the four-
way relation between the attractiveness of goods at stake, the “wealth” 
of the opportunity structure, the quantity of dissatisfied agents (RD1

freq 
and RD2

freq) and the intensity of this dissatisfaction (RD1
intensity and 

RD2
intensity) assumes multiple forms that are not independent of the 

interaction configuration linking agents to each other.18

To prove it, I first consider a microcosm without dyadic interactions 
between agents, and then I introduce these interactions, first in the 
form of a random network, then a scale-free network.19

with whom.” In particular, Gartrell (2001:Â€173–5) demonstrated that dyadic proper-
ties such as frequency, “multiplexity” and strength of contacts are especially import-
ant in predicting the reference point of a given agent. As I said in my introduction, 
among formal analyses of relative deprivation, only Burt (1982) explicitly takes into 
account the role of social networks. In particular, he posits that actors compare with 
one another if they are structurally equivalent. Assuming that actor’s significant others 
are his direct contacts, I am positing a more general dyadic rule of comparison.

17	 As I noted above, Elster (1999:Â€141) presents “envy” as a comparison-based emotion, 
and so did I in Equations [5] and [6]. In Equations [7] and [8], by contrast, where 
I posit agents to be embedded in a network of dyadic links, “envy” is considered as 
an interaction-based emotion (emotion that arises “only when there is social inter-
action,” see Elster (1999:Â€141)).

18	 The attractiveness of G1 over G2 is measured by R(B) = (B1- C1) / (B2Â€– C2) and R(K) =  
[(B1Â€– C1)Â€–Â€(B2Â€– C2)] / (C1Â€– C2) (see respectively, Boudon (1982:Â€118) and Kosaka 
(1986:Â€38)); on the other hand, the “wealth” of the opportunity structure is repre-
sented by the percentage of goods with the highest benefit, i.e. goods G1.

19	 In a previous analysis (see Manzo 2009b), I explored in depth only the relation 
between the first three elements. The main computational results obtained by ana-
lyzing approximately 26,000 parameter combinations concerning both the zero and 
non-zero-second alternative cases (i.e. respectively, the situation in which B2 = C2 = 
0 and B2 ≠ 0 and C2 ≥ 0) can be synthesized as follows:Â€(a) the relation between an 
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Figure 13.1 Relative deprivation in an artificial society, situation 1 
percentages (95% confidence intervals) of agents who finally obtain 
B2 or nothing after betting C1Â€ or C2Â€ (y-axis) and average values of 
RD1Â€ and RD2Â€ intensity (average 95% confidence intervals) for these 
agents (y-axis) as a function of the percentage of available G1Â€ (x-axis) 
and different levels of G1Â€ attractiveness (see R(K) and R(B) values).
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R(K) = 0.000; R(B) = 1.000; B1 = 100; C1 = 55; B2 = 50; C2 = 5
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Figure 13.1 (cont.)
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Figure 13.1 (cont.)
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Figure 13.1 (cont.)
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Figure 13.1 (cont.)

The population-based inter-individual comparisons case

Figure 13.1 presents the RD2
intensity and RD1

intensity generated by 
the model for each level of RD2

freq and RD1
freq. To improve graph 

Â�readability, I have omitted trends in percentages of agents obtaining 
what they want.20

improvement in the opportunity structure and the percentage of dissatisfied agents 
may take a positive linear form (more opportunities, more dissatisfied agents), a nega-
tive one (more opportunities, fewer dissatisfied agents), or both forms at once; (b) we get 
closer to the negative linear form (more opportunities, fewer dissatisfied agents) as attract-
iveness of the higher-returning goods makes each agent’s choice insensitive to that of 
others; (c) this multiplicity of forms and the underlying dynamic do not vary relative 
to population size as long as size change is proportionate to number of higher-return-
ing goods; in the opposite case, the “more opportunities, more dissatisfied agents” rela-
tion reappears at a rate proportionate to how limited opportunity structure range is 
relative to population size. These results thus confirm and extend Boudon’s, Kosaka’s 
and Yamaguchi’s original result (they only studied indeed the situation in which B2 = 
C2 = 0), which is that the positive linear form designated by “more opportunities, more 
dissatisfied actors”Â€– i.e. the take-off point of sociological literature on RDÂ€– is only 
validated in a specific region of the parameter space.

20	 I am presenting here a set of typical patterns generated by the model for a specific 
series of R(B) and R(K) values. In fact, I explored about 1,976 different combin-
ations of B1, C1, B2 and C2 values (varying respectively between 10 and 100; 1.5 and 
95; 5 and 90 and 0 and 50) producing G1 attractiveness levels ranging from (R(K)) 
= -0.90 to (R(K)) = 98.5, or, alternatively, (R(B)) = 0.09 to (R(B)) 99.5. Taking into 
account also the variations of the percentage of G1 lots, I simulated the model for 
20,700 parameter combinations, for a total of 207,000 simulations, since each com-
bination was simulated ten times to assess the model behavior variability linked to 
its random elements (for the sake of brevity, I omitted here the values of ten seeds 
I used). All the simulations consider populations of 100 agents demanding a min-
imal gain of r = 1. This sensitivity analysis was performed using the NetLogo 4.0.3 
“BehaviorSpace” module.
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We see that RD2
freq and RD2

intensity are more likely to move in the 
same direction than are the curves relative to RD1

freq and RD1
intensity. In 

the first case, an increase in the proportion of agents aiming for G2 but 
getting 0 tends to go together with a more intense feeling of depriva-
tion, and vice versa. In the second case, on the contrary, an increase in 
the proportion of agents aiming for G1 but only getting G2 tends to go 
together with a less intense feeling of deprivation, whereas that intensity 
increases when the number of these agents falls.

The aggregate RD2
freq quantity and the individual RD2

intensity thus 
seem linked by a positive relation (“more more-intensely-dissatisfied 
individuals” or “fewer less-intensely-dissatisfied individuals”), whereas 
RD1

freq and RD1
intensity seemed linked by a negative one (“more less-in-

tensely-dissatisfied individuals” or “fewer more-intensely-dissatisfied 
individuals”). This reflects the fact that the mechanisms I posited as 
generating the dissatisfaction associated by agents respectively with 
RD1 and RD2 are not the same (compare Equations [5] and [6]).

The case of RD1 is simple. The feeling of deprivation is assumed here 
to derive from two sources:Â€a feeling of disappointment whose intensity 
is proportionate to the size of the gap between expected gain and gain 
actually realized, and a feeling of envy of an intensity inversely propor-
tional to the rate of deprivation in the population. Under this condition 
and for a given value of R(K), whereas the value of the term quantifying 
the first source is stable, the value of the term quantifying the second 
falls as RD1

freq increases, and vice versa. This means we are first add-
ing a gradually falling quantity, then a gradually rising quantity, to a 
fixed quantity. In all situations where RD1

freq increases at first and then 
declines, the result will be a flattened U-curve for RD1

intensity. However, 
as we near the negative form of the relation between opportunity struc-
ture and RD1

freq, RD1
intensity will increase more or less slowly, because in 

this case RD1
freq is only falling.

The case of RD2 is slightly more complex. Here the feeling of depriv-
ation is understood to derive from a third mechanism, in addition to 
the other two sources allowed for RD1; namely, that agents experien-
cing RD2 reason counterfactually, and this in turn generates a feeling 
of regret whose intensity is proportionate to the number of wasted G1. 
Under this condition, even though the value of the term quantifying the 
effect of interpersonal comparisons falls as RD2

freq increases, the value 
of the term quantifying the effect of the counterfactual reasoning tends 
to increase. This means that the more abrupt the rise in RD2

freq and 
the greater its breadth, the more likely it is for a concomitant increase 
in RD2

intensity to set in. On the other hand, when RD2
freq is low and rises 

little, RD2
intensity is more likely to be stable (the effects of the two mecha-

nisms cancel each other out) or even to vary inversely with RD2
freq (and 
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here we come back to the situation characterizing RD1
intensity, where the 

inter-individual comparisons takes precedence).21

As soon as we combine the plural forms of the two groups of relations 
studied thus farÂ€– on the one hand, the relation between an improved 
objective opportunity structure and percentage of dissatisfied agents 
(RD2

freq and RD1
freq) (see above note 19); on the other, the relation link-

ing percentage of dissatisfied agents with intensity of agents’ feelings 
of deprivation (RD2

intensity and RD1
intensity)Â€– the following general result 

appears:Â€enriching the opportunity structure can indeed maintain a vir-
tuous relation between that structure and both the quota of dissatisfied 
agents (“more opportunities, fewer dissatisfied individuals”) and the 
intensity of individual feelings of dissatisfaction (“more opportunities, 
weaker dissatisfaction”). The problem is that if interpersonal compari-
sons are operative which inversely link the feeling of dissatisfaction to 
“scarcity” of deprivation experiences, then the regions where these two 
relations obtain may well fail to overlap. Under these conditions, dis-
satisfaction intensity will indeed tend to go down when the number of 
dissatisfied agents increases, whereas when that number falls, dissatis-
faction intensity will tend to rise.

The neighborhood-based inter-individual comparisons case

If we now introduce a dyadic tie structure linking agents to each other 
within the artificial microcosm (see Equations [7] and [8]), how will 
this change the complex relation between the opportunity structure 
(here number of G1), percentage of dissatisfied agents (RD2

freq and 
RD1

freq), and feeling-of-deprivation intensity (RDintensity)?
The relation between G1 and RD2

freq–RD1
freq should not be affected. 

In the present version of the model, dyadic agent interactions determine 
only the set of agents with whom an agent experiencing RD compares 
himself. RD2

intensity and RD1
intensity, therefore, are what may be affected 

by such interactions.
To see how fully this is confirmed, I put agents into a random net-

work with a slight spatial bias (the average network degree here is 10). 

21	 The profile of the curves just discussed and interpreted is stable when we simulate 
the model after eliminating the source of inter-individual variability I applied to each 
of the three mechanisms responsible for RD1

intensity and RD2
intensity. And their form 

is not even linked to the range of the three terms that formalize the action of these 
mechanisms. I also simulated the probabilistic and determinist versions of the model, 
standardizing each of these terms, by relating it to the difference between its minimal 
and maximal theoretical values. While this standardized version is unquestionably 
more elegant formally, it does not change the profile of the curves presented in Figure 
13.1, except to further flatten the shape.
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R(K) = –.9010; R(B) = .0990; B1 = 60; C1 = 55; B2 = 55; C2 = 4.5
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Figure 13.2 Relative deprivation in an artificial society, situation 
2 percentages (95% confidence intervals) of agents who finally 
obtain B2 or nothing after betting C1Â€ or C2Â€ (y-axis) and average 
values of RD1 and RD2 intensity (average 95% confidence intervals) 
for these agents (y-axis) in a no-network world and in a random-
network world (average degree = 10) as a function of the percentage 
of available G1 (x-axis) and G1 attractiveness (see R(K) and R(B) 
values).
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R(K) = 0.000; R(B) = 1.000; B1 = 100; C1 = 55; B2 = 50; C2 = 5
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Figure 13.2 (cont.)
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R(K) = 1.000; R(B) = 2.000; B1 = 100; C1 = 65; B2 = 70; C2 = 50
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Figure 13.2 (cont.)
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Figure 13.2 (cont.)



G. Manzo288

R(K) = 23.750; R(B) = 24.750; B1 = 100; C1 = 4.5; B2 = 1; C2 = 0.5
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Figure 13.2 (cont.)

Figure 13.2 introduces into Figure 13.1 the RD2
intensity and RD1

intensity 
values I got by simulating the model under this new condition.22

We can first consider situations where G1 attractiveness is weak, lead-
ing, as we now know, to an extremely high level of RD2

freq. In this case 
we observe that in comparison to an artificial world in which there is 
no network:

1.	 the relation between an increase in G1 and RD2
intensity is not exclu-

sively positive but rather both negative and positive;
2.	 when RD2

freq is low, RD2
intensity level is a great deal higher, but as 

RD2
freq increases RD2

intensity gets considerably closer to the level 
observed when there were no ties between agents.

What accounts for these differences? Given that agents embedded in 
dyadic interactions compare themselves to immediate neighbors experi-
encing RD2, the probability of an agent finding other agents around him 
in the same situation is low when RD2

freq is low. This implies that the term 
of Equation [7] quantifying the interpersonal comparison will take on 
extremely high values for many agents, generating a particularly high level 
of RD2

intensity. As RD2
freq increases, this condition disappears:Â€ the term 

relative to interpersonal comparisons will take on increasingly low values 
while the term relative to counterfactual reasoning will increase continu-
ously. This is why average RD2

intensity levels can fall first, then rise.

22	 To construct the network, I used an algorithm that has only been available in 
NetLogo since version 4.0.3 (Stonedahl and Wilensky 2008). The algorithm works 
as follows:Â€(a) we take a randomly chosen agent; (b) we determine the agent closest to 
him (Euclidian distance); (c) we create a link; (d) we reiterate these operations until 
the average network degree reaches the average degree chosen at the outset.
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If we now consider situations where RD1
freq replaces RD2

freq because 
G1 attractiveness is stronger, we observe equally significant modifica-
tions. Compared to the no-network artificial world, the form of the 
relation between an increase of G1 and RD1

intensity does not changeÂ€– we 
move gradually from a mixed negative/positive relation to an entirely 
positive one (“more opportunities, stronger dissatisfaction”)Â€– but the 
levels of RD1

intensity are much higher at the extremes; that is, when RD1
freq 

is low. This is because, here again, the overall “scarcity” of RD1 implies 
the presence of many “neighborhoods” in which agents experiencing 
RD1 have no neighbors in this same deprived situation. Since this agent 
is the only one not to get what he wanted, he feels maximum envy.23

As Figure 13.3 shows, that this structural condition exists is attested 
by the results of simulations where the average network degree went from 
10 to 50. Under this condition, the differences in average RD1

intensity and 
RD2

intensity levels that existed between societies with and societies without 
random networks tend to disappear. This is because given that agents’ 
“neighborhoods” have been extended, an agent in RD1 or RD2 is more 
likely to meet someone among the neighbors he is linked to who is also 
experiencing RD, despite the fact that the overall rate of RD1 and RD2 
are low. The effect is to contain quite firmly the spectacular rise of the 
term quantifying neighborhood-based inter-individual comparisons.

We can obtain more direct proof of this phenomenon by introducing a 
scale-free network (rather than a random one) into the model. The pur-
pose of doing this is to construct by default a situation with a great num-
ber of small “neighborhoods,” thereby structurally multiplying situations 
where an agent experiencing RD1 or RD2 is unlikely to find another in the 
same situation. This should greatly amplify average RDintensity levels.24

Figure 13.4 show that this is exactly what happens. Regardless of 
G1 attractiveness, RD2

intensity or RD1
intensity are indeed regularly higher 

in the artificial society based on a scale-free network than they are in 

23	 This aggregate effect will, of course, appear more or less sharp depending on the 
functional form chosen to formalize the term quantifying interpersonal comparisons 
in the case where agent has no neighbors in the same deprivation situation as his. It 
can be almost entirely effaced, for example, by applying a logarithmic transformation 
to this term in Equations [7] and [8]. Having studied the behavior of the model under 
that alternative condition, I conclude, however, that this type of manipulation con-
ceals the presence of a significant theoretical phenomenon.

24	 To construct this network I used an algorithm available in NetLogo (Wilensky 2005) 
based on a formalization of the “preferential attachment” mechanism first put forward 
by Barabasi and Réka (1999). Researchers are currently at work constructing algorithms 
formalizing mechanisms that will generate scale-free (and small-world)networks that 
are sociologically more significant than the one implemented with the algorithm I used 
(see, for instance, Pujol et al. 2005). Here, however, what interests me are the structural 
characteristics of a scale-free network, not the process by which it emerges.
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R(K) = –.9010; R(B) = .0990; B1 = 60; C1 = 55; B2 = 55; C2 = 4.5
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Figure 13.3 Relative deprivation in an artificial society, situation 
3 percentages (95% confidence intervals) of agents who finally 
obtain B2 or nothing after betting C1 or C2 (y-axis) and average 
values of RD1 and RD2 intensity (average 95% confidence intervals) 
for these agents (y-axis) in a no-network world and in a random-
network world (average degree = 50) as a function of the percentage 
of available G1 (x-axis) and G1 attractiveness (see R(K) and R(B) 
values).

R(K) = –.5082; R(B) = .4918; B1 = 70; C1 = 45; B2 = 55; C2 = 14.5
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Figure 13.3 (cont.)

R(K) = 0.000; R(B) = 1.000; B1 = 100; C1 = 55; B2 = 50; C2 = 5
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R(K) = 0.667; R(B) = 1.667; B1 = 65; C1 = 39.5; B2 = 40; C2 = 24.5
0

25

50

75

100

125

150

175

200

225

250

5 10 15

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

100

% G1

R
D

 fr
eq

ue
nc

y
R

D
 in

te
ns

ity

RD1 frequency (% agents who obtain B2 after betting C1)

RD2 frequency (% agents who obtain 0 after betting C2)

RD1 intensity [by formula (6)]  

RD1 intensity [by formula (8)] [random net, average degree = 50] 

RD2 intensity [by formula (7)] 

RD2 intensity [by formula (9)] [random net, average degree = 50] 



G. Manzo292

R(K) = 1.000; R(B) = 2.000; B1 = 100; C1 = 65; B2 = 70; C2 = 50
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R(K) = 1.850; R(B) = 2.850; B1 = 77.5; C1 = 23.75; B2 = 11.25; C2 = 0.5
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Figure 13.3 (cont.)
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R(K) = 4.000; R(B) = 5.000; B1 = 82; C1 = 17; B2 = 1; C2 = 0.8
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Figure 13.3 (cont.)
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an artificial society without dyadic interactions that delimit the set 
of agents with whom one compares oneself. The same is true if we 
compare the scale-free network microcosm with the random network 
society (see Figure 13.2), except for the extreme situations, i.e. where 
RD2

freq or RD1
freq is low.

This is readily explained. Though there are indeed a great many small 
“neighborhoods” with the scale-free networkÂ€– and this increases the 
probability that agents experiencing RD will not meet another agent in 
their neighborhood who is also experiencing RDÂ€– these same limited 
neighborhoods mean that the agent is alone among a low number of 
satisfied fellow agents. Despite the fact that dissatisfaction is maximal 
here compared to the situation where one has at least a few neighbors 
who are also experiencing RD, this maximum will be lower compared 
to the random-network artificial society (comprising an average degree 
of 10) where one may be alone among a higher number of satisfied 
agents.

Tables 13.1 and 13.2 directly demonstrate (for the two extreme 
values of R(B)–R(K)) these structural bases of the differences in aver-
age RD2

intensity or RD1
intensity levels that emerge in the artificial society 

with a random network and the society with a scale-free network. In the 
simulations just commented on, we see on the one hand that degree of 
agents experiencing RD2 and RD1 is on average lower in the scale-free 
network than in the near-random one, and on the other, the percentage 
of agents who are the only ones in their neighborhood experiencing RD 
is on average higher in the first case than in the second.

R(K) = 23.750; R(B) = 24.750; B1 = 100; C1 = 4.5; B2 = 1; C2 = 0.5
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Figure 13.3 (cont.)
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R(K) = –.5082; R(B) = .4918; B1 = 70; C1 = 45; B2 = 55; C2 = 14.5
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R(K) = –.9010; R(B) = .0990; B1 = 60; C1 = 55 ; B2 = 55 ; C2 = 4.5
0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

100

% G1

R
D

 fr
eq

ue
nc

y
R

D
 in

te
ns

ity

RD1 frequency (% agents who obtain B2 after betting C1)
RD2 frequency (% agents who obtain 0 after betting C2)
RD1 intensity [by formula (6)]  
RD1 intensity [by formula (8)] [scale-free net] 
RD2 intensity [by formula (7)] 
RD2 intensity [by formula (9)] [scale-free net] 

Figure 13.4 Relative deprivation in an artificial society, situation 4 
percentages (95% confidence intervals) of agents who finally obtain 
B2 or nothing after betting C1 or C2 (y-axis) and average values of 
RD1 and RD2 intensity (average 95% confidence intervals) for these 
agents (y-axis) in a no-network world and in a scale-free-network 
world as a function of the percentage of available G1 (x-axis) and G1 
attractiveness (see R(K) and R(B) values).
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Figure 13.4 (cont.)

R(K) = 0.000; R(B) = 1.000; B1 = 100; C1 = 55; B2 = 50; C2 = 5
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R(K) = 0.667; R(B) = 1.667; B1 = 65; C1 = 39.5; B2 = 40; C2 = 24.5
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Figure 13.4 (cont.)

R(K) = 1.000; R(B) = 2.000; B1 = 100; C1 = 65; B2 = 70; C2 = 50
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R(K) = 1.850; R(B) = 2.850; B1 = 77.5; C1 = 23.75; B2 = 11.25; C2 = 0.5
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R(K) = 2.950; R(B) = 3.950; B1 = 85; C1 = 20; B2 = 10; C2 = 1
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Figure 13.4 (cont.)

R(K) = 4.000; R(B) = 5.000; B1 = 82; C1 = 17; B2 = 1; C2 = 0.8
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R(K) = 9.000; R(B) = 10.000; B1 = 94.50; C1 = 9.5; B2 = 1.5; C1 = 0.2
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R(K) = 14.000; R(B) = 15.000; B1 = 81; C1 = 1.5; B2 = 5.5; C2 = 0.2
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R(K) = 23.750; R(B) = 24.750; B1 = 100; C1 = 4.5; B2 = 1; C2 = 0.5
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Figure 13.4 (cont.)

These results suggest that dyadic interactions matter. In my min-
imalist hypothetical schemaÂ€– my only assumption was that network 
influences actors’ points of comparisonÂ€ – these simulations indicate 
that the presence of interactions can significantly modify the individual 
dissatisfaction levels which characterize a microcosm whose agents are 
entirely isolated. Restricting the bases for inter-individual comparisons 
amounts, paradoxically, to increasing the probability of individual dis-
satisfaction being stronger. The more the dyadic interaction configur-
ation multiplies the number of neighborhoods where the agent is the 
only one not to have what he wants, the further we move away from the 
dissatisfaction levels that appear for an artificial world where the agent 
compares his deprivation situation to the global diffusion of deprivation 
in the population at large.

Concluding remarks

This chapter has aimed to sketch a unified theoretical framework which 
links two classes of problems:Â€on the one hand, the one of simultan-
eously generating variable quantities of dissatisfied actors and hetero-
geneously intense individual feelings of dissatisfaction; on the other 
hand, the one of determining how this dissatisfaction is modified when, 
instead of taking into account overall success rates, individuals only 
consider the success rate of their closest contacts.

Methodologically, the point here has been to suggest that this 
undertaking can now benefit from a computational toolÂ€– agent-based 
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Table 13.1 Average degree of agents experiencing RD2 and percentage of 
these agents who do not have any neighbors in RD2 (average values with 
standard deviation in parentheses) for each of the three network structures 
used (case of R(K) = -0.09. See Figures 13.2, 13.3 and 13.4 for RD 
frequency and RD intensity trends)

Random network 
(average degree = 10)

Random network 
(average degree = 50) Scale-free network

  
 
 
 

 
RD2 
agents’ 
average 
degree

% of agents 
who do not 
have any 
neighbors  
in RD2

 
RD2 
agents’ 
average 
degree

% of agents 
who do not 
have any 
neighbors  
in RD2

 
RD2 
agents’ 
average 
degree

% of agents 
who do not 
have any 
neighbors in 
RD2

5 9.9 (1.5) 52.0 (24.0) 52.5 (5.2) 0.0 1.7 (0.8) 88.0 (18.3)
10 10.2 (0.8) 35.0 (18.6) 51.2 (3.3) 0.0 1.7 (0.7) 80.0 (15.5)
15 9.9 (0.7) 16.7 (10.4) 50.9 (3.3) 0.0 2.1 (1.0) 74.0 (18.2)
20 9.9 (0.5) 13.0 (6.0) 49.7 (2.6) 0.0 2.0 

(0.8)
71.5 (14.8)

25 9.9 (0.5) 10.0 (6.5) 49.9 (2.2) 0.0 1.9 (0.6) 66.0 (13.4)
30 9.9 (0.4) 4.7 (3.4) 49.6 (2.6) 0.0 2.0 

(0.5)
59.0 (12.3)

35 10.0 
(0.24)

1.7 (1.9) 49.0 (2.3) 0.0 2.0 
(0.4)

52.0 (9.7)

40 10.0 (0.2) 0.5 (1.0) 49.5 (2.1) 0.0 2.0 
(0.3)

49.8 (12.2)

45 10.0 (0.2) 0.9 (1.5) 49.9 (2.0) 0.0 2.0 
(0.2)

42.4 (8.6)

50 10.0 (0.2) 0.0 49.7 (1.4) 0.0 2.0 
(0.2)

36.4 (7.3)

55 10.0 (0.2) 0.0 50.0 (1.1) 0.0 2.1 
(0.2)

28.4 (7.1)

60 10.0 (0.2) 0.0 49.9 (1.2) 0.0 2.1 (0.1) 25.8 (7.7)
65 10.0 (0.2) 0.0 49.9 (1.0) 0.0 2.1 (0.1) 22.3 (4.8)
70 10.0 (0.1) 0.0 49.8 (0.8) 0.0 2.1 (0.1) 20.6 (4.5)
75 10.0 (0.1) 0.0 49.9 (0.7) 0.0 2.1 (0.1) 17.7 (4.1)
80 10.0 (0.1) 0.0 49.8 (0.8) 0.0 2.1 (0.1) 13.8 (5.5)

85 10.0 (0.1) 0.0 49.7 (0.6) 0.0 2.1 (0.1) 9.4 (3.8)
90 10.0 (0.1) 0.0 49.8 (0.5) 0.0 2.1 (0.1) 6.8 (4.1)
95 9.9 (0.2) 0.0 49.7 (0.8) 6.0 (12.8) 2.1 (0.1) 25.3 (7.9)

100 — — — — — —
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Table 13.2 Average degree of agents experiencing RD1 and percentage of 
these agents who do not have any neighbors in RD1 (average values with 
standard deviation in parentheses) for each of the three network structures 
used (case of R(K) = 23.75. See Figures 13.2, 13.3 and 13.4 for RD 
frequency and RD intensity trends)

Random network 
(average degree = 10)

Random network 
(average degree = 50) Scale-free network

 

RD1 
agents’ 
average 
degree

% of agents 
who do not 
have any 
neighbors in 
RD1

RD1 
agents’ 
average 
degree

% of 
agents 
who 
do not 
have any 
neighbors  
in RD1

RD1 
agents’ 
average 
degree

% of agents 
who do not 
have any 
neighbors 
in RD1

5 10.0 (0.1) 0.0 50.0 (0.3) 0.0 2.0 (0.1) 3.7 (2.4)
10 10.0 (0.1) 0.0 50.0 (0.3) 0.0 2.0 (0.1) 7.2 (4.3)
15 10.0 (0.1) 0.0 49.7 (0.5) 0.0 2.0 (0.1) 9.6 (5.6)
20 10.0 (0.1) 0.0 49.7 (0.7) 0.0 2.0 (0.1) 12.6 (6.5)
25 10.1 (0.2) 0.0 49.7 (0.7) 0.0 2.0 (0.2) 18.5 (9.4)
30 10.1 (0.2) 0.0 50.2 (0.9) 0.0 2.0 (0.2) 22.4 (10.4)
35 10.1 (0.2) 0.0 50.3 (1.1) 0.0 2.0 (0.2) 24.3 (10.8)
40 10.1 (0.2) 0.0 50.2 (1.2) 0.0 2.0 (0.2) 26.0 (10.5)
45 10.1 (0.3) 0.0 50.1 (1.2) 0.0 2.0 (0.3) 32.0 (14.5)
50 10.1 (0.2) 0.4 (0.8) 50.1 (0.9) 0.0 2.0 (0.4) 37.6 (17.1)
55 10.3 (0.2) 0.4 (0.9) 50.0 (1.7) 0.0 2.0 (0.4) 41.6 (16.0)
60 10.3 (0.3) 0.8 (0.1) 49.8 (2.0) 0.0 2.1 (0.4) 44.0 (12.9)
65 10.4 (0.3) 1.4 (1.8) 49.7 (2.0) 0.0 2.0 (0.5) 50.0 (14.2)
70 10.4 (0.4) 1.7 (1.7) 49.6 (2.5) 0.0 2.1 (0.6) 55.3 (16.6)
75 10.3 (0.4) 5.6 (3.7) 49.5 (3.2) 0.0 2.1 (0.7) 57.6 (13.5)
80 10.4 (0.4) 9.0 (6.2) 49.6 (3.2) 0.0 1.8 (0.6) 70.5 (14.2)
85 10.5 (0.5) 18.7 (8.8) 49.6 (3.3) 0.0 1.8 (0.5) 72.7 (16.5)
90 10.4 (0.7) 32.0 (19.4) 49.1 (4.6) 0.0 1.8 (0.6) 78.0 (18.3)
95 10.3 (1.1) 60.0 (32.2) 50.0 (0.3) 10.0  

(13.41)
1.5 (0.3) 92.0 (16.0)

100 — — — —

modelingÂ€– that allows both for specifying in a highly flexible way the 
conceptual structure of a bundle of mechanisms and exploring their 
aggregate causal effects under a large range of conditions.

Introducing at the same time generative mechanisms of relative 
deprivation rate and feelings thus allowed to establish that an improv-
ing opportunities system may go along with two different situations. 
On the one hand, it can produce a “more opportunities, more dissatisfied-
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yet-less-intensely-dissatisfied agents” pattern; on the other hand, it may 
go together with a “more opportunities, fewer dissatisfied-yet-more-intense-
ly-dissatisfied agents” pattern. The condition under which the model 
studied here leads to the emergence of these complex relations is the 
presence of interpersonal comparisons that inversely tie individual dis-
satisfaction to the diffusion of deprivation situations.

The theoretical interest of these computational results is that they 
circumscribe the extension of the classic “more opportunities, higher dis-
satisfaction levels” pattern, showing that the inverse pattern, i.e. “more 
opportunities, lower dissatisfaction levels,” is equally possible. However, 
they also signal that the two patterns might be incompatible. This 
incompatibility is exemplified in the extreme case where all actors want 
to obtain the most attractive goods regardless of how many competitors 
they think they have. In this case, as opportunities improve, the quan-
tity of dissatisfied agents falls while the intensity of deprived agents’ 
dissatisfaction can only grow. According to the absolute intensity of this 
feeling, society’s level of individual dissatisfaction could ultimately fall 
(if these agents are not intensely dissatisfied) or, on the contrary, rise (if 
these agents, while few in number, are also intensely dissatisfied).

Dyadic interaction configuration then can play a decisive role in the 
appearance of one or another systemic equilibrium. The last variant 
of the model simulated here suggests that if we suppose that actors 
take account of deprivation diffusion within their local neighborhood 
rather than throughout the population, individual dissatisfaction levels 
tend to soar. If the network contains few low-degree-nodes, this explo-
sion is primarily verified when the global quota of dissatisfied agents is 
reduced; by contrast, the rise tends to become general if there are many 
low-degree-nodes. In this case, regardless of the global proportion of 
dissatisfied agents, the probability that each will be the only one among 
his contacts not to have what he wants rises.

The theoretical interest of introducing several structures of dyadic 
ties, which has been greatly facilitated by agent-based modeling, 
is considerable. First, even though the idea is an old oneÂ€– Merton 
had already distinguished comparisons of self “with those men who 
are in some pertinent respect of the same status or in the same cat-
egory” from comparisons “with the situation of others with whom 
[one was] in actual association, in sustained social relations” (Merton 
1957:Â€ 231)Â€ – a formal model of relative deprivation implementing 
this distinction was still missing. This seems to represent real pro-
gress because, as (Gartrell 1987:Â€49) noticed, “the network approach 
will help to resolve fundamental, unanswered questions about social 
evaluation first raised in 1950 by Merton and RossiÂ€– specifically, the 
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origins of comparative frameworks and the relation between indi-
vidual and categorical or group reference points.” Second, introdu-
cing neighborhood-based comparisons gives us the occasion to refine 
some existing conceptual distinctions. On the one hand, insofar as 
the last version of the model conceives “envy” as a by-product of 
comparisons that are driven by dyadic links between actors, it seems 
reasonable to introduce a hybrid category, i.e. what one can call 
“comparison–interaction-based emotions,” in Elster’s (1999:Â€141–2) 
original typology, which distinguishes between comparison-based 
emotions and interaction-based emotions (see above note 17). On the 
other hand, this concept tends to make more complex Hedström’s 
(2005:Â€ch. 3, fig. 3.2) typology of social interactions. In addition to 
“desire-mediated,” “belief-mediated” and “opportunity-mediated 
interactions,” we should indeed also take into account the possibility 
of “emotion-mediated interactions.”

The main limitations of the results discussed are equally obvious. 
First, the model presented here is still excessively simple compared 
with the mechanisms which we imagine generate both dissatisfied actor 
rates in a given society and the intensity of their feelings of dissatisfac-
tion. Second, whatever the degree of theoretical complexity we grant 
these mechanisms, we would have to demonstrate that they are opera-
tive in real societies. What I was looking for in this preliminary ana-
lysis was simply material that would serve to convince the reader that 
agent-based simulation constitutes a particularly well-adapted tool for 
analytical sociology, enabling sociologists in this field to study as com-
pletely as possible the causal implications of the models they aspire to 
analyze.

With regard to theoretical enrichment, it should be evident that this 
type of analysis can be pushed as far as we like. But the technique 
can also be extremely useful when the objective is to link the model 
to reality. It is perfectly capable of handling fine empirical data on 
reasoning, comparisons, feelings and/or specific objects grounded in 
individual states of deprivation. Likewise, the regularities discussed 
here can easily be compared with empirical quantifications of dissat-
isfied actor rates as well as of components of the individual feeling of 
dissatisfaction.

From this perspective, agent-based models offer an additional gen-
eral benefit:Â€they pinpoint just where our empirical data are deficient, 
thereby suggesting how to reorient our collecting procedures.

So let us conclude this chapter by emphasizing the importance of 
pursuing that connection between analytical sociology, agent-based 
models and more traditional quantitative techniques.
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In the minds of many quantitative sociologists, analytical sociology 
is merely an empty shell. Morgan (2005:Â€ 26), for example, wrote as 
follows of the contributions assembled by Hedström and Swedberg 
(1998):Â€ “Without a doubt, they correctly identified a major problem 
with quantitatively oriented sociology. But, they did not offer a suffi-
ciently complete remedy.” Pisati (2007:Â€7–8) recently wrote:Â€“It is not 
clear how the explanation strategy in question can be applied in prac-
tice to explain complex systemsÂ€– which is what social phenomena con-
stantly are.”

Though we can agree that “there is no method, let alone a logic, for 
conjecturing mechanisms … this is an art, not a technique” (Bunge 
2004:Â€200), it seems to me urgent to have the “art” give way to agent-
based modeling when we study such mechanisms. If we cannot resolve 
to take this step, then this false definition of the situationÂ€– i.e. “analytic 
sociology is an empty shell”Â€– could become true.
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