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Books and articles on causality and causal infer-
ence are typically written from the point of view
of a specific theory of causality. They present
tools that are supposed to support causal claims
from the point of view of that theory (for several
examples, see Gelman, 2011). Here we endorse
a different approach. We first cover various
understandings of the concept of causality, and
of mechanisms, and emphasize that none of
them can be considered intrinsically superior
to another. We then discuss typical design-
and model-based identification strategies of
causal effects from within the potential out-
come approach, and point to the crucial role
of untestable assumptions for defending causal
claims. Finally, we explain how computational
tools like agent-based modeling (ABM) can aid
causal inference and, in conclusion, we argue that
persuasive causal claims in fact require data and
arguments coming from different methods (for
a systematic exposition of this perspective, see
Manzo, 2021).

Varieties of Views on Causality
and Mechanisms

One of the major insights of philosophical
scholarship on causality is that this concept can
be given a variety of definitions (Cartwright,
2004: 806). To put some order among them, an
important distinction is between dependence
(or difference-making) accounts of causality, and
production accounts of causality (Hall, 2004). The
common intuition behind the former is that an
event c is the cause of another event e: if, had
c not occurred, e would not have occurred. In
contrast, the production view sees c as the cause
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of e, if c helps producing, bringing about, or
generating e.

Social scientists propose similar typologies. For
instance, Goldthorpe (2001) suggests distinguish-
ing between causation as “robust dependence,” as
“consequential manipulation,” and as “generative
process.” In the first case, X is seen as the cause of
Y, if there is an association between the two, and
that this association does not (completely) disap-
pear after introducing another set of variables Z
possibly related to Y (and/or to both X and Y). In
the second case, a cause X is seen as a property
that can be at least in principle manipulated,
such that, when appropriate controls are taken
into consideration, interventions on X change
Y. Finally, when causation is understood as a
“generative process,” X is seen as a trigger for a
well-defined sequence of events that operates at a
smaller scale than the association under scrutiny,
and that has the capacity to generate the effect
of X on Y. Thus, Goldthorpe’s first two concepts
of causation clearly fall within Hall’s category of
“dependence” accounts of causation, while the
third concept, “causation as a generative process,”
illustrates the “production” view.

Among scholars understanding causality in
terms of dependence (rather than production)
relationships, an additional important distinction
is that between “forward” and “reverse causal
inference” (see Gelman, 2011: 955). In the former
case, one seeks to quantify “what may happen if
we do X”; in the latter case, one wants to answer
the question “what causes Y.” For this reason,
“what if” versus “why” causal questions are also
often referred to as, respectively, the “effect-of-a-
cause” and the “causes-of-an-effect” approaches
(see, for instance, Dawid, Faigman, and Fienberg,
2014). In Goldthorpe’s typology, causation as con-
sequential manipulation amounts to searching
for the effects of causes, while causation as robust
dependence searches for the causes of effects.

The distinction is important because a major
evolution in contemporary causal reasoning
across various disciplines is the diffusion of the
potential outcome approach to causal inference,
which precisely amounts to shifting the focus of
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2 C A U S A L I T Y

quantitative scholars from backward to forward
causation (for a historical overview, see Imbens
and Rubin, 2015: ch. 2). Within the potential out-
come framework, X is the cause of Y, if, after being
exposed to X, a unit of analysis manifests a change
in Y. In theory, one would need to observe the
same unit of analysis as being both exposed and
not exposed to X, and then interpret the differ-
ence between the two outcomes as the effect of the
cause X. In practice, one can only observe a unit
of analysis in one of the two states – a practical
limitation known as the “fundamental problem
of causal inference” (see Holland, 1986: 947). To
get around this, the potential outcome approach
resorts to the random assignment of units of
analysis into “treatment” and “control” groups,
where the former corresponds to units exposed to
the purported cause X, and the latter to units that
are not. Thus, randomization makes it possible
to interpret the control group as the counter-
factual: that is, what would have happened had
the units not been exposed to the treatment. The
effect of a cause is then conceived as the average
difference between the outcomes among those
that were exposed to the treatment and those that
were not.

From a methodological point of view, random-
ized experiments are seen as the prototypical
method to implement the potential outcome
approach (Gelman, 2011: 956), but a major impli-
cation of this perspective clearly was the attempt
to reinterpret multivariate statistical methods
for observational data as a tool aiming not so
much to identify “robust dependences” – to go
back to Goldthorpe’s distinctions – as to render
comparable the outcomes of group subjects that
were not randomly assigned to the treatment
state of interest (Hernán and Robins, 2020: ch.
15). That is why the potential outcome approach
is now often seen as a “unified framework for the
prosecution of causal questions” (Morgan and
Winship, 2014: 3).

Despite its ambition of generality, the poten-
tial outcome approach is intrinsically rooted in
a specific understanding of causality, namely
a counterfactual perspective, which is a form
of dependence accounts of causality in Hall’s
above-mentioned terminology. From a pro-
duction perspective, this restriction of causal
reasoning to counterfactual dependences is ques-
tionable. Indeed, many social scientists interested

in mechanism-based explanations tend to tie
causal inference to the construction of generative
models clarifying how the dependence connec-
tion of interest could arise (see, among others,
Boudon, 1979; Hedstrom, 2009). Even some
statisticians prefer to “restrict the term [causality]
to situations where some explanation in terms
of a not totally hypothetical underlying process
or mechanism is available” (Cox, 1992: 297). To
this, followers of the potential outcome approach
retort that mechanism-based explanations in
fact can be rigorously tested within a counter-
factual framework (Morgan and Winship, 2014:
ch. 10).

The problem here is that different conceptions
of mechanisms enter the picture, which com-
plicates the dialogue between scholars animated
by different understandings of causality. In par-
ticular, from within a dependence perspective,
a mechanism is seen as “a causal relationship
involving one or more intervening variables
between a treatment and an outcome” (Knight
and Winship, 2013: 282). In this sense, a “medi-
ating mechanism M unpacks the black-box of a
treatment to outcome relationship by elaborating
on how the causal effect is brought about (via
M)” (Makovi and Winship, 2021). In contrast,
from a production perspective on causation,
a mechanism “describes the relevant entities,
properties, and activities that link them together,
showing how the actions at one stage affect and
effect those at successive stages” (Machamer,
Darden, and Craver, 2000: 12). In this sense, a
mechanism cannot be reduced to a network of
intervening variables but should be explicitly
modeled as a dynamic system of interacting
units whose behaviors generate sequences of
microlevel changes that are supposed to create
the dependence connections of interest (see
Andersen, 2014a, 2014b).

Once this variety of views on causality (and on
mechanisms) is taken into account, one should
become “more cautious about investing in the
quest for universal methods for causal inference”
(Cartwright, 2004: 806). Being pluralistic may
help to see intuitions behind different concepts of
causality as complementary, and to start thinking
about causal inference from an “evidential plu-
ralism” perspective (see Russo and Williamson,
2007) according to which diverse methods can
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C A U S A L I T Y 3

produce different types of data and arguments
that are equally important to support persuasive
causal claims.

Causal Inference, Empirical Data,
and Assumptions

An obstacle that must be overcome to defend this
view comes from the hierarchies that many estab-
lish between experimental and observational
methods that can help discovering causal con-
nections, compared to computational methods
like ABM that cannot. In a nutshell, the supposed
superiority of the former for causal inference
come from the fact that they rely on empirical
information whereas computational models like
ABM are entirely made of substantive and formal
assumptions (for a particularly clear statement,
see Diez Roux, 2015: 101).

Randomized controlled trials and instrumental
variables – respectively, one design-based and one
model-based strategy to identify causal effects
from within the potential outcome approach (see
Morgan and Winship, 2014: 30–33) – can be
used to illustrate the point that, contrary to this
widespread view, experimental and observational
methods, too, heavily depend on assumptions
that cannot be tested empirically, thus ultimately
making the causal claim at hand contingent on
a complex mix of limited empirical information
and theoretical arguments.

Randomized Controlled Trials (RCTs)

From a dependence perspective on causality,
in order to establish that X causes Y one needs
to rule out all possible confounders, that is, all
possible factors affecting both X and Y. Yet, it is
impossible to know all these factors. RCTs are
regarded as “the failsafe way to generate causal
evidence” in many disciplines (Antonakis et al.,
2010: 1086) because, by randomly allocating
units of analysis to different groups – the treat-
ment (where the putative cause X is present)
and the control (where the putative cause X is
absent) – they ensure by design that all con-
founders are ruled out. Since nothing other than
randomness is responsible for units being in the
treatment or in the control group, if we observe
a difference in the probability of Y between the

two groups, then this can only be caused by the
treatment. The average difference between the
treatment and the control group can therefore be
inferred to be caused by X.

As noted by Deaton and Cartwright (2018: 2),
the appeal of RCTs comes from the fact that ran-
domization to the treatment seems to make the
method require “minimal substantive assump-
tions, little or no prior information, and to be
largely independent of ‘expert’ knowledge.” But
this fails to be the case in practice. In particular,
as an RCT cannot say anything about the effect of
the treatment on any particular subjects, assump-
tions are needed to handle the way the effect of the
putative cause X on Y varies across subgroups of
the target population (Cartwright, 2007: 16–17)
as well as the possible temporal heterogeneity of
these effects within subjects (Sampson, Winship,
and Knight, 2013: 13, 18–19). Turnarounds for
tackling treatment response heterogeneity obvi-
ously exist (see Manski, 2013: 63–76), but these
solutions require additional assumptions (see
Morgan and Winship, 2014: 425–427), which, as
admitted by the method’s proponents themselves,
are “credible to the degree that someone thinks it
so” (Manski, 2003: 48).

RCTs also require assumptions that are simply
empirically untestable. The most important of
them is the “stable unit treatment value assump-
tion” (SUTVA), which requires the absence of
potential interferences among the units’ potential
outcomes as well as the absence of hidden varia-
tions in the treatment (Imbens and Rubin, 2015:
10). As noted by Sobel (2006: 1399), “interference
is the norm” in settings where behaviors are
embedded in social interactions, which makes
SUTVA highly implausible, and likely to be vio-
lated, in most of the contexts studied by social
scientists. When violations of SUTVA are fore-
seeable, specific experimental designs can be
conceived to prevent these violations (on cluster-
based designs, see Hong and Raudenbush, 2013;
on two-stage randomization, see Halloran and
Hudgens, 2016). But, again, these designs, too,
rely on further assumptions that are difficult to
test empirically, and, as noted by Imbens and
Rubin (2015: 11), some “more distant” versions
of SUTVA are in fact formulated.

Thus, the superiority of RCTs for establish-
ing causal claims seems unwarranted. RCTs are
only apparently sufficient to generate causal
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4 C A U S A L I T Y

knowledge through data alone. Any particular
experimental design in fact relies on assumptions
that require external and substantive knowledge
to be defended.

Instrumental Variables (IVs)

The same holds for methods for observational
data that try to recreate experimental conditions
in nonexperimental settings. For this aim, IVs are
one of the most common techniques (see Bollen,
2012). Within this framework, to estimate the
effect of a putative cause X on the outcome of
interest Y, one can exploit variation on a third
variable (i.e., the instrument I) that needs to
be correlated with X – the “relevance” condition
(Stock and Watson, 2010: 333) – and uncorrelated
with the putative effect Y given X – the “exclusion”
or “exogeneity” restriction (Gangl, 2013: 381). By
seeing I as a sort of exogenous shock affecting
X, so that the effect of I on Y only goes through
X, IVs promise “to estimate the coefficient of
interest consistently and free from asymptotic
bias from omitted variables, without actually
having data on the omitted variables or even
knowing what they are” (Angrist and Krueger,
2001: 73; emphasis added). However, similarly to
RCTs, this again fails to be the case in practice.
It is indeed difficult or impossible to determine
empirically the validity of the relevance and the
exogenous conditions.

As to the former, Bound, Jaeger, and Baker
(1995: 446) demonstrated that, when the
instrument I is “weak,” that is, only marginally
correlated with the putative cause(s) X of interest,
“even enormous samples do not eliminate the
possibility of quantitatively important finite-
sample biases,” and that small violations to the
exclusion restriction are amplified, thus leading
to even larger biases. But how does one establish
whether an instrument I is weak? The variety
of existing technical solutions ultimately sug-
gests that the problem cannot be solved with
data alone, which led some to admit that “good
instruments often come from detailed knowledge
of the economic mechanism and institutions
determining the regressor of interest” (Angrist
and Krueger, 2001: 73).

As to the “exclusion” restriction, the prob-
lem seems even more severe. Essentially, this
condition requires that all potential pathways

going from I (i.e., the instrument) to Y (i.e.,
the potential outcome) are controlled for. But
this is a condition that, by construction, cannot
be verified because it is always possible to miss
some confounders. That is why Gangl (2013:
381; emphasis added) admitted that “it is impor-
tant to realize that the exclusion restriction is
an assumption that is not testable in principle.”
Again, to justify this assumption, theoretical
reasoning and substantive knowledge “about how
and why things work” (Deaton, 2010: 432) is
required, which makes any causal inference made
through IVs contingent on that knowledge (see
also Rosenzweigh and Wolpin, 2000).

Thus, the distinction between experimental
and observational methods that establish robust
counterfactual dependencies by relying on data,
and computational methods like ABM that are
incapable of contributing to causal inference,
because entirely made of assumptions (see Diez
Roux, 2015: 101), seems inaccurate. Typical iden-
tification strategies of causal effects are clearly not
a simple matter of data alone.

Computational Methods and Causal
Inference

Given that experimental and observational
methods are always likely to leave doubts about
the possibility that a putative dependence rela-
tionship is confounded (and/or mediated) by
unknown variables, it seems legitimate to ask
whether these methods can be complemented
by other approaches, in particular those that
can algorithmically generate a given dependence
relationship of interest, on the basis of an explicit
substantive model explaining how X leads to Y.

ABM is a flexible computational method to
accomplish this task (for an introduction, see
Wilensky and Rand, 2015). An ABM is a com-
puter program written in an object-oriented
language. Objects are “computational entities
that encapsulate some state, are able to perform
actions, or methods, on this state, and commu-
nicate by message passing” (Wooldridge, 2009:
28). When the program is executed, the objects
dynamically evolve according to the rule they
encapsulate. The important point is that the
objects do not have any specific substantive con-
tent; they can represent atoms, cells, individual
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C A U S A L I T Y 5

actors, or any other entities at a higher level of
abstraction (like firms or states). Objects can be
as heterogeneous as desired, and they can have
all sorts of attributes. All sorts of structures of
interactions between objects can be represented.
The method is intrinsically dynamic, which
allows one to trigger fine-grained sequences
of time-stamped events. Finally, an ABM can
contain different levels of analysis, and allows
one to observe how dynamic microlevel changes
progressively lead to macrolevel changes. For
these reasons, ABM is intrinsically rooted within
a view of mechanisms as multilevel dynamic
systems of interacting units (see Vu et al., 2020),
and thus well suited to implement a production
view of causation (see Anzola, 2020).

ABMs are typically considered as disconnected
from causal inference because, differently from
experimental and observational methods, they
rely entirely on assumptions. Thus, they cannot
tell us anything about the world outside the world
of the model (see Diez Roux, 2015: 101). How-
ever, this view only covers one specific type of
ABM. In fact, there is nothing intrinsic to ABM
that limits this algorithmic technique to pure
abstractions.

From the early applications of ABMs in the
social sciences in the 1960s, two tendencies have
coexisted. On the one hand, there were highly
abstract models like Schelling’s (1971) model
of residential segregation whose main goal was
to explore the macro consequences of a sup-
posedly general preference for not being in a
minority, no matter what specific groups were at
stake. On the other hand, there were data-driven
models like Hägerstrand’s (1965) study of the
diffusion of agricultural innovations in Sweden,
where the postulated microscopic mechanism
was grounded in empirical observations and
simulated outcomes were (at least qualitatively)
compared with data on the actual diffusion pat-
terns. In Schelling’s case, the ABM followed the
logic of the “keep it simple, stupid” (KISS) princi-
ple according to which assumptions should be as
simple and abstract as possible because the ABM
is intended to help understanding general pro-
cesses present in a variety of specific applications
(see Axelrod, 1997: 5). In Hägerstrand’s case, the
ABM followed instead the “keep it descriptive,
stupid” (KIDS) principle according to which one
should start with a model that is as descriptively

rich as the available data allow. Then, simpli-
fications can be introduced as long as they are
not inconsistent with what is known about the
empirical functioning of the phenomenon under
scrutiny, and as long as the simplification does
not reduce the model’s performance in reproduc-
ing the to-be-explained outcome (see Edmonds
and Moss, 2005). When the KISS principle is
prioritized, ABMs are envisaged as “tools to
think with” (O’Sullivan and Perry, 2013: 14–15),
whereas when one follows the KIDS principle,
the goal is to design “high fidelity models” (de
Marchi and Page, 2014).

Recent reviews of the ABM field suggest that
highly abstract ABMs inspired by the KISS
principle are still very frequent but that ABMs
seeking stronger connections with empirical data
are multiplying (see Bianchi and Squazzoni, 2015:
299–300). While the value of highly simplified
ABMs is indisputable for theory development,
when ABM wants to help causal inference,
ABMs with “high-dimension realism” (Bruch
and Atwell, 2015) should be given priority.

In fact, there are at least three dimensions
along which an ABM can gain realism. First,
the microlevel assumptions of an ABM can be
anchored to sociological and/or psychological
theories, possibly in turn supported by empir-
ical and/or experimental evidence, rather than
relying on mere intuitions about how agents
behave and influence each other. This dimension
can be labeled “theoretical realism.” Second,
the sociodemographic features of an ABM as
well as the parameters and functions adopted
to implement its microlevel assumptions and
interaction structures can be estimated through
empirical and/or experimental data exogenous
to the model – a form of “empirical calibration”
sometimes referred to as “input validation” (Delli
Gatti et al., 2018: 169–172) – rather than on arbi-
trarily chosen statistical distributions, functional
forms, or abstract models of network topologies.
This dimension can be labeled “input realism.”
Finally, the simulated outputs of an ABM can
be systematically confronted with well-specified
data sets describing the target of interest – a
form of empirical validation sometimes called
“output validation” (see Delli Gatti et al., 2018:
165) – rather than general qualitative patterns
abstractly defined. This dimension can be labeled
“output realism.”
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6 C A U S A L I T Y

Examples of ABMs characterized by the explicit
attempt to combine simultaneously theoretical,
input, and output realism are still rare but exist.
For instance, Manzo et al. (2018) wanted to
explain why technological innovations spread
faster and more widely among Indian and
Kenyan potters with different religious back-
grounds. To understand whether the structure
of family ties within these religious subgroups
may have impacted on adoption probabilities,
Manzo and colleagues designed an ABM whose
microlevel assumptions were grounded within
the theory of “complex contagions” (theoretical
realism); then, crucial parameters of the ABM
were empirically calibrated, in particular the
kinship networks through which the diffusion
process was supposed to flow (input realism);
finally, simulated diffusion curves were gener-
ated as a function of different hypotheses on
imitative and learning behaviors, and systematic
confrontation with the actual diffusion curves
was performed (output realism). By manipulat-
ing the imitation mechanisms driving agents’
choices, given the empirically calibrated network
structure, the authors showed that the effect of
kinship networks on the rate of diffusion was
mediated by the behaviors (documented through
field observations) of central potters within the
network so that the same network property could
in fact lead to fast or slow diffusion in different
subgroups depending on the specific features of
those behaviors.

Obviously, no ABM will reach full realism on
the three dimensions. The degree of theoretical,
input, and output realism of an ABM should be
seen as a continuum, and different observers may
provide different assessments of where an ABM
stands on that continuum (on the inescapable
subjective character of judgment on a model’s
realism, see Sugden, 2013). The point rather is
that, contrary to the common view that sees
ABMs as pure abstractions, the method is struc-
turally able to embed various combinations of
substantive knowledge and data, and that it is
precisely this combination that makes an ABM
more or less “credible” to perform causal infer-
ence. As noted by Sugden (2000: 23), “if we are
to make inductive inferences from the world of a
model to the real world, we must recognize some
significant similarity between those two worlds.”
Theoretical, input, and output realism of an ABM

are three ways to increase the degree of “par-
allelism” between the mechanism(s) the ABM
wants to describe and the real-world mechanism.
Thus, the higher an ABM scores on theoretical
realism, and the better it is calibrated on the input
side and validated with respect to its outputs, the
higher the likelihood the ABM can serve as a
“mimicking” device, and, on this ground, work as
an inferential device. As stated by Morgan (2012:
337) with reference to earlier microsimulations
in macroeconomics, “it is this mimicking at two
levels that enabled Orcutt’s simulation to offer
both accounts of the world in the model, and a
credible basis for inferences to the real world that
the model represents.”

In particular, when theoretical realism is high
and exogenous empirical data are introduced
within the ABM, so that the model is constrained
on the input side, the ABM becomes an empir-
ically constrained device with its own behavior.
The novel knowledge the ABM is able to produce
on its own concerns the connection between the
low-level empirically grounded mechanisms and
the larger-scale patterns associated with these
mechanisms. This knowledge is novel because
it was absent from the data that were used to
calibrate the model. It is in this sense that, when
the ABM is empirically calibrated (theoretically
realistic and empirically validated), it generates
knowledge that is relevant for causal inference
from a production perspective on causality.

Actually, this is precisely the way in which
ABMs are exploited by the rare studies that
confront statistical methods for causal inference
with ABM on the same causal issue. For instance,
Zachrison et al. (2016) built an ABM with the
explicit intent to assess the extent to which
Christakis and colleagues’ regression modeling
approach to the estimation of the causal effect
of social ties on various health-related outcomes
were able to do so when homophily may con-
found genuine social influences (for an overview
of this debate, see Christakis and Fowler, 2013).
To this aim, Zachrison et al. (2016: 3–4) designed
an empirically calibrated ABM to create longi-
tudinal network data of exactly the same kind
as those studied by Christakis and colleagues
but where the role of network influence and
homophily were perfectly known because the
two mechanisms were explicitly coded within the
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C A U S A L I T Y 7

ABM. By estimating the regression models speci-
fied by Christakis and associates on the network
data generated by their ABM, Zachrison et al.
(2016: tables 1–5) found that, while Christakis
and colleagues’ statistical model was able to detect
correctly the presence/absence of the network
effect, regardless of the presence/absence of the
homophily mechanism, the statistical model was
not able to detect correctly the presence/absence
of homophily, no matter whether the network
influence mechanism was present or absent from
the ABM. This is an illustration of a potential
major contribution of ABM to causal inference:
By explicitly modeling mechanisms that may con-
found the dependence relationship of interest, an
ABM increases our confidence in the robustness
of the putative causal effect.

To this argument, one may rightly retort that
the conditions under which an ABM can be
exploited as an inferential device on a mechanis-
tic ground are very demanding because in practice
full empirical calibration is never possible (see,
for instance, Grüne-Yanoff, 2009). While this
obstacle is real, ABM has internal tools to assess
the consequences on a model’s results of its pieces
for which empirical data and/or well-developed
theories may be insufficient to defend their real-
ism. Various sensitivity (see Delli Gatti et al.,
2018: 151–162) and robustness (see Railsback
and Grimm, 2019: 300, 312–313) techniques
are increasingly adopted by ABM modelers to
assess the extent to which an ABM’s simulated
outcomes are contingent on unverified or unveri-
fiable assumptions. Similarly, several heuristics
exist to understand the internal dynamic of an
ABM so that one can reduce the probability of
making errors of interpretation as to what gen-
erates the model’s outcomes (Flache and Matos
Fernandes, 2021). And, after all, ABM does not
seem special in this respect. As now popular-
ized by the debates on the “researcher degree
of freedom” problem, experimental designs and
statistical methods for observational data involve
a number of hidden choices and assumptions
that require to be checked (see Wicherts et al.,
2016). To do so, one solution precisely is to
turn to various forms of sensitivity analysis to
assess the extent to which the empirical estimates
produced by those methods are robust against
different models’ specifications (Young and Hol-
steen, 2017) and/or potential confounders (see

Gangl, 2013: 385–390). And, these robustness
checks within experimental and observation
methods are as challenging as within an ABM.
In Gangl’s (2013: 399) words, these tools “would
be degraded to little more than a computational
exercise in absence of background empirical and
theoretical knowledge suggesting the likelihood
and extent of confounding” (Gangl, 2013: 399).

Conclusion

Statisticians and social and computer scientists
have differently conservative attitudes regarding
the conditions under which causal inference is
possible, but the vast majority of them tend to
associate causal inference with specific methods
(see Gelman, 2011: 959). Our main message
is that causal inference would gain from being
understood at the intersection of different views
on causation and mechanisms as well as by com-
bining different methods incorporating these
different views. Experiments, statistical methods
for observational data, and computational mod-
els like ABM are exposed to similar problems of
insufficient data and untestable assumptions for
which only theoretical arguments, at best, may be
available. Given these common limitations, these
methods produce qualitatively diverse knowl-
edge that can be fruitfully integrated to reach
persuasive causal claims.

Philosophers of science convincingly argue that
the uncertainty about the causal nature of a given
relation between two happenings can in fact be
reduced in (at least) two ways (see Illari, 2011).
On the one hand, data and arguments on credible
entities, activities, and interactions – that is, a
mechanism seen as a multilevel dynamic sys-
tem – help to reduce the doubt that the relation of
interest could disappear, or be weakened, because
of unobserved confounders, effect modifiers,
and/or intervening variables. A theoretically real-
istic and well-calibrated ABM provides this type
of mechanistic knowledge. However, on the other
hand, data and arguments on how given entities,
activities, and interactions combine to produce
some behavior actually do not guarantee that
their organized operation is not masked in the
broader context of further (possibly unknown)
modes of interaction and outer influences so that
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the overall outcome of the postulated mecha-
nisms is not the expected putative causal relation
of interest. That is why knowledge produced
by experimental and observational methods on
robust networks of variables also influences one’s
belief that the relation may be causal.

According to the “evidential pluralism” per-
spective on causality (Williamson, 2019), this
is the main reason why data and arguments
along dependence and difference-making lines
should be recursively combined with data and
arguments on mechanisms understood as multi-
level dynamic systems of interacting entities and
activities. We strongly advocate this perspective
because it pushes one to combine experiments,
statistical methods for observational data, and
computational methods like ABM rather than
establishing dubious hierarchies between them.
Experimentalists, statistically oriented scholars,
and simulationists all struggle with analogous
issues of precision, accuracy, and calibration. In
each methodology, knowledge that is equally but
diversely relevant for defending a given causal
claim is produced through a complex combi-
nation of background substantive knowledge,
external empirical evidence, and sensitivity and
robustness procedures that are necessary to jus-
tify assumptions that are empirically unverifiable.
Thus, method synergies seem more fruitful than
method “warlordisms.”

SEE ALSO: Causal Inference; Computational
Sociology; Experimental Methods; General
Linear Model; Mathematical Sociology; Micro-
Macro Links; Multivariate Analysis; Path
Analysis; Regression and Regression Analysis;
Social Network Analysis
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